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generate a series of rapidly repeating wave
shapes, each wave shape constituting a
weld cycle with a cycle time
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‘ divide the wave shapes into states |

1730/\
measure a plurality of weld parameters
occurring in one or more of the states at an
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57 ABSTRACT

An arc welding system and methods. The system is capable
of monitoring variables during a welding process, according
to wave shape states, and weighting the variables accord-
ingly, detecting defects of a weld, diagnosing possible
causes of the defects, quantifying overall quality of a weld,
obtaining and using data indicative of a good weld, improv-
ing production and quality control for an automated welding
process, teaching proper welding techniques, identifying
cost savings for a welding process, and deriving optimal
welding settings to be used as pre-sets for different welding
processes or applications.

18 Claims, 21 Drawing Sheets

1750’-\
analyze at least one of the plurality of
quality parameters and the plurality of weld
parameters to diagnose the arc welding
process by determining one or more
possibla causes of one or more localized
or continuous defects of the weld

.

calculate a plurality of quality parameters
for each of the states based on the

interrogation rate over a period of time:
repeatedly during the welding process

measurements of the weld parameters
during the welding process,
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SYSTEMS, METHODS, AND APPARATUSES
FOR MONITORING WELD QUALITY

RELATED APPLICATIONS

The present application is being filed as a continuation-
in-part (CIP) patent application claiming priority to and the
benefit of U.S. patent application Ser. No. 13/453,124, filed
on Apr. 23, 2012, which is a continuation-in-part of U.S.
patent application Ser. No. 12/775,729, now U.S. Pat. No.
8,569,646, filed on May 7, 2010, which claims priority to
and the benefit of U.S. Provisional Patent Application No.
61/261,079 filed on Nov. 13, 2009, the entire disclosures of
which are incorporated herein by reference.

TECHNICAL FIELD

The general inventive concepts relate to electric arc
welding and, more particularly, to systems, methods, and
apparatuses for monitoring variables during a welding pro-
cess and weighting the variables accordingly, quantifying
weld quality, obtaining and using data indicative of a good
weld, improving production and quality control for an
automated welding process, teaching proper welding tech-
niques, identifying cost savings for a welding process, and
deriving optimal welding settings to be used as pre-sets for
different welding processes or applications.

BACKGROUND

Many different conditions and parameters contribute to
the overall quality of a resulting weld. Consequently, manu-
facturers of electric arc welders have attempted to monitor
operation of the welder to determine the quality of the weld
and the efficiency of the welder during operation in a
manufacturing facility. One attempt to monitor an electric
arc welder is illustrated in U.S. Pat. No. 6,051,805 to Vaidya
(hereinafter “Vaidya”) where a computer or other pro-
grammed instrument is employed to monitor average current
and the efficiency of the welding operation, which efficiency
is expressed as a ratio of the time welding is performed to
the total time of the work shift. In accordance with standard
technology, this disclosed monitoring system includes a first
control circuit which is in the form of a central processing
unit with standard accessories such as RAM and EPROM. A
second control circuit is connected to the first circuit to input
and output information during the monitoring procedure.
The monitor gathers information over a period of time which
is disclosed as extending over a few hours or up to 999
hours. The monitor determines welding efficiency and moni-
tors time to determine average current and accumulated arc
welding time for overall efficiency.

Vaidya discloses a capability of monitoring the current
and wire feed speed, as well as gas flow during the welding
procedure. All of this information is stored in appropriate
memory devices for subsequent retrieval of the operating
characteristics of the welder during the welding process. In
this way, the productivity of the welder can be measured to
calculate cost efficiency and other parameters. Monitoring of
the electric arc welder, as suggested in Vaidya, has been
attempted by other manufacturers to measure average cur-
rent during a welding process. However, measuring average
current, voltage, wire feed speed or other parameters during
a welding process and using this data for recording the
performance of the welding operation has not been satisfac-
tory. In the past, monitoring devices have had no pre-
knowledge of the parameters being monitored.
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Consequently, monitoring of parameters such as current,
voltage and even wire feed speed in the past, even using the
technology set forth in Vaidya, has been chaotic in response
and incapable of determining the actual stability of the
electric arc or whether the welding process is above or below
desired parameter values. This information must be known
for the purpose of rejecting a welding cycle and/or deter-
mining the quality of the weld performed during the welding
cycle with desired accuracy. In summary, monitoring the
operation of an electric arc welder when used for a variety
of welding processes has not been satisfactory because there
is no prior knowledge which can be used for the purposes of
evaluating the welding process during its implementation.

Overcoming these drawbacks, U.S. Pat. No. 6,441,342 to
Hsu (hereinafter “Hsu”) discloses a monitor and method of
monitoring an electric arc welder as the welder performs a
selected arc welding process that creates information on the
operation of the welder. Accordingly, use of standard, high
power computer technology can be used on equally precise
and intelligent data generated by the monitor. The monitor
and monitoring system of Hsu employs known information
during the welding process. The information is fixed and not
varying. The monitor concentrates on specific aspects of the
welding process to employ prior knowledge which is com-
pared to actual performance. Thus, the stability and accept-
able magnitudes or levels of a selected parameter is deter-
mined during a specific aspect of the welding process. The
weld process is separated into fixed time segments with
known desired parameters before monitoring. Then this data
can be processed by known computer techniques to evaluate
aspects of the weld cycles.

Hsu discloses that the welding process is carried out by an
electric arc welder generating a series of rapidly repeating
wave shapes. Each wave shape constitutes a weld cycle with
a cycle time. Each weld cycle (i.e., wave shape) is created
by a known wave shape generator used to control the
operation of the welder. These wave shapes are divided into
states, such as in a pulse welding process, a state of
background current, ramp up, peak current, ramp down, and
then back to background current. By dividing the known
driving wave shape into states defined as time segments of
the generated arc characteristics, any selected one of the
states can be monitored. Indeed, many states can be multi-
plexed. For instance, in the pulse welding process the state
related to the peak current can be monitored. Hsu discloses
that the state of the welding process is monitored by being
read at a high rate preferably exceeding 1.0 kHz. Each of the
actual welding parameters, such as current, voltage or even
wire feed speed is detected many times during each peak
current state of the wave shape used in the pulse welding
process. In this manner, the ramp up, ramp down, and
background current are ignored during the monitoring pro-
cess of the peak current state.

Consequently, the peak current is compared with a known
peak current. A function of the peak current can be used to
detect variations in the actual peak current output from the
electric arc welder. In Hsu, a minimum level and a maximum
level on the lower and higher side of the command peak
current are used to determine the level of the peak current
many times during each peak current state of the pulse weld
wave shape. Whenever the current exceeds the maximum, or
is less than the minimum, this event is counted during each
wave shape. The total deviations or events are counted for a
weld time (i.e., a time during which a welding process or
some significant portion thereof is carried out). If this count
is beyond a set number per wave shape or during the weld
time, a warning may be given that this particular welding
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process experienced unwanted weld conditions. Indeed, if
the count exceeds a maximum level the weld is rejected.
This same capability is used with a statistical standard
deviation program to read the peak current many times
during each peak current state of the wave shape to sense the
magnitude of the standard deviation. In practice, the stan-
dard deviation is the root-mean-square (RMS) deviation
calculation by the computer program. In Hsu, the average
peak current is calculated and recorded as well as the level
conditions and the stability characteristics. The RMS of the
current or voltage is also determined for each of the states
being monitored, for example, the peak current state of a
pulse wave shape. While the peak current level or standard
elevation is monitored, the background current stage can be
monitored by current level and duration.

Hsu discloses selecting a state in the wave shape and
comparing the desired and known command signals for that
state to the actual parameters of the welding process during
that monitored state. The selection is based on prior knowl-
edge of the waveform generator. For example, at a specific
wire feed speed WFS1, the waveform generator is pro-
grammed to adjust peak current to control arc length. The
“informed” monitor then selects the peak current segment as
the monitored state, when welding at this wire feed speed
WFS1. At another wire feed speed WFS2, however, the
waveform generator is programmed to adjust background
time to control arc length (and not peak current). The
“informed” monitor then selects the background time as the
monitored state and parameter, when welding at this wire
feed speed WFS2. In contrast, a posteriori monitor has no
idea that at different wire feed speeds, different aspects of the
waveform should be monitored to detect arc stability. Moni-
toring background time at wire feed speed WFS1 or moni-
toring peak current at wire feed speed WFS2, in this
example, would be very ineffective. Thus, Hsu discloses
using a time segment of the wave shape for monitoring this
segment of the wave shape using prior knowledge of the
desired values. This allows actual monitoring of the electric
arc welding process and not merely an averaging over the
total wave shape.

In Hsu, the monitor is characterized by the use of prior
knowledge, as opposed to the normal process of merely
reading the output parameters experienced during the weld-
ing process. Consequently, the monitoring greatly simplifies
the task of detecting normal behavior of a welder when the
normal behavior is a function of time and differs during only
one aspect of the welding process. The teachings of Hsu are
not as applicable to monitoring voltage in a constant voltage
process, because the desired level of voltage is a known
characteristic during the total weld cycle. However, in other
welding processes when both the voltage and current vary
during different segments of the wave shape, the method of
Hsu gives accurate readings of stability, RMS, standard
deviation, average, below minimum and above maximum
before the actual parameter being monitored during selected
segments of the wave shape.

According to Hsu, the time varying welding processes,
such as pulse welding and short circuit welding, are moni-
tored with precise accuracy and not by reading general
output information. The monitor is activated at a selected
time in each wave form which is the selected state or
segment of the wave shape. The monitor compares actual
parameters to the desired parameters in the form of com-
mand signals directed to a power supply of the welder. In
Hsu, monitoring can occur during only specific segments of
the wave shape; however, in exceptional events, such as
when the arc is extinguished or when there is a short circuit,
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a computerized subroutine is implemented by either voltage
sensing or current sensing to restart the arc and/or correct the
short. The subroutines for these events run parallel to the
monitoring program. Consequently, these exceptions do not
affect the overall operation of the monitor. These subroutines
are constructed as exceptional states or time segments. The
parameters or signals within these exceptional states are
monitored in a similar fashion as described above.

In Hsu, production information over a calendar time, shift
or even by operator can be accumulated for the purposes of
evaluating the operation or efficiency of a welder. The
monitoring of each weld cycle by monitoring a specific
segment or state of the wave shape allows accumulation of
undesired events experienced over time. This also allows a
trend analysis so that the operator can take corrective actions
before the welding process actually produces defective
production welds. Trend analysis, defect analysis, accumu-
lated defects, logging of all of these items and related real
time monitoring of the electric arc welder allows direct
intervention in a timely manner to take preventive actions as
opposed to corrective actions.

SUMMARY

The general inventive concepts contemplate systems,
methods, and apparatuses for monitoring variables during a
welding process and weighting the variables accordingly,
quantifying weld quality, obtaining and using data indicative
of a good weld, detecting weld defects, and diagnosing
possible causes of the weld defects. The weld quality data
allows for improvements in production and quality control
for an automated welding process, teaching proper welding
techniques, identifying cost savings for a welding process,
and deriving optimal welding settings to be used as pre-sets
for different welding processes or applications. By way of
example to illustrate various aspects of the general inventive
concepts, several exemplary systems, methods, and are
disclosed herein.

A method of monitoring an electric arc welder as the
welder performs a selected arc welding process by creating
actual welding parameters between an advancing wire and a
workpiece, the selected process controlled by command
signals to a power supply of the welder, according to one
exemplary embodiment, is disclosed. The method includes
(a) generating a series of rapidly repeating wave shapes,
each wave shape constituting a weld cycle with a cycle time;
(b) dividing the wave shapes into states; (c¢) measuring a
selected weld parameter occurring in one of the wave shape
states at an interrogation rate over a period of time to obtain
a data set for the selected weld parameter; (d) for each period
of time, calculating a stability value for the selected weld
parameter from the data set; (e) comparing each stability
value to an expected stability value to determine if a
difference between the stability value and the expected
stability value exceeds a predetermined threshold; and (f) if
the difference exceeds the threshold, weighting the stability
value with a magnitude weight based on the difference, and
weighting the stability value with a time contribution weight
based on a time contribution of the wave shape state to its
wave shape. In this manner, the method can assign multiple
weights (e.g., based on a degree/magnitude of deviation and
atime contribution of its state) to a measured parameter (i.e.,
an item in the data set) that constitutes an outlier. In one
exemplary embodiment, an outlier is defined as a measured
value for a weld parameter that falls outside the limit of three
(3) standard deviations away from the mean value of the
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weld parameter. A monitor, integrated with an arc welder, for
performing this exemplary method is also contemplated.

A method of quantifying a weld’s quality by monitoring
an electric arc welder as the welder performs a selected arc
welding process by creating actual welding parameters
between an advancing wire and a workpiece, the selected
process controlled by command signals to a power supply of
the welder, according to one exemplary embodiment, is
disclosed. The method includes: (a) generating a series of
rapidly repeating wave shapes, each wave shape constituting
a weld cycle with a cycle time; (b) dividing the wave shapes
into states; (c) measuring a plurality of selected weld param-
eters occurring in one or more of the states at an interroga-
tion rate over a period of time repeatedly during a weld time;
and (d) calculating a plurality of quality parameters for each
of the states based on the measurements of the selected weld
parameters during the periods of time, wherein the quality
parameters represent an overall quality measurement of the
weld. A monitor, integrated with an arc welder, for perform-
ing this exemplary method is also contemplated.

In one exemplary embodiment, the method also includes:
(e) comparing a value of each of the quality parameters
calculated for each period of time to a corresponding
expected quality parameter value to determine if a difference
between the calculated quality parameter value and the
expected quality parameter value exceeds a predetermined
threshold; and (f) if the difference exceeds the threshold,
weighting the calculated quality parameter value with a
magnitude weight based on the difference, and weighting the
calculated quality parameter value with a time contribution
weight based on a time contribution of its state to the wave
shape including the state. A monitor, integrated with an arc
welder, for performing this exemplary method is also con-
templated.

In one exemplary embodiment, the interrogation rate is
120 kHz. In one exemplary embodiment, the period of time
is approximately 250 ms.

In one exemplary embodiment, the selected weld param-
eters include, for each of the states, a count of the measure-
ments taken for each of the selected weld parameters in the
period of time, a mean voltage voltage in the period of time,
a root mean square voltage RMSV in the period of time, a
voltage variance V. in the period of time, a mean current
current in the period of time, a root mean square current
RMSI in the period of time, and a current variance I, in the
period of time, wherein voltage=a sum of voltages measured
in the period of time/the count of voltage measurements,
wherein

N
2 (Voltage‘-)2

i=

RMSV =
N

wherein V _ =RMSV-voltage, wherein current=a sum of

var

currents measured in the period of time/the count of current
measurements, wherein

) (current;)?

i

=
2‘

RMSI =

and wherein 1, =RMSI-current.
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In one exemplary embodiment, the quality parameters
include a quality count average QCA for each state calcu-
lated as:

1=

count;

i

CA =
& N

wherein N is the total number of weld cycles in a period of
time, and wherein count.sub.i refers to a count of the
measurements for a specific one of the weld cycles in the
period of time.

In one exemplary embodiment, the quality parameters
include a quality count standard deviation QCSD for each
state calculated as:

N
Z (count; — QCA)?

i=1
CSD =
& N-1

In one exemplary embodiment, the quality parameters
include a quality count standard deviation QCSD for each
state calculated as:

N
Z (count; — QCA)?

csp = =L
& N

In one exemplary embodiment, the quality parameters
include a quality voltage average QVA for each state cal-
culated as:

1=

voltage,

i

QVA =

N

wherein N is the total number of weld cycles in the period
of time, and wherein voltage, refers to a voltage measure-
ment for a specific one of the weld cycles in the period of
time.

In one exemplary embodiment, the quality parameters
include a quality voltage standard deviation QVSD for each
state calculated as:

N
Z (voltage, — QVA)?

i=1
VSD =
Q N-1

In one exemplary embodiment, the quality parameters
include a quality voltage standard deviation QVSD for each
state calculated as:

N
Z (voltage, — QVA)?

vsp= =L
& N
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In one exemplary embodiment, the quality parameters
include a quality current average QIA for each state calcu-
lated as:

1=

current;

i

IA =
Q N

wherein N is the total number of weld cycles in the period
of time, and wherein current, refers to a current measure-
ment for a specific one of the weld cycles in the period of
time.

In one exemplary embodiment, the quality parameters
include a quality current standard deviation QISD for each
state calculated as:

N
Z (current; — QIA)?

i=1
ISD =
Q N-1

In one exemplary embodiment, the quality parameters
include a quality current standard deviation QISD for each
state calculated as:

N
Z (current; — QIA)2

I1SD = =L
¢ N

In one exemplary embodiment, the quality parameters
include a quality voltage variance average QVVA for each
state calculated as:

N
Z Vvar;

i=1

QVVA =

wherein N is the total number of weld cycles in the period
of time.

In one exemplary embodiment, the quality parameters
include a quality voltage variance standard deviation
QVVSD for each state calculated as:

N
Z (Vvar; — QVVA)?

vvsp= =L
& N_1

In one exemplary embodiment, the quality parameters
include a quality voltage variance standard deviation
QVVSD for each state calculated as:

N
Z (Vvar; — QVVA)?

vvsp= =L
& N
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In one exemplary embodiment, the quality parameters
include a quality current variance average QIVA for each
state calculated as:

N
Z Vvar;

orva= 2

wherein N is the total number of weld cycles in the period
of time.

In one exemplary embodiment, the quality parameters
include a quality current variance standard deviation QIVSD
for each state calculated as:

N
Z (Ivar; — QIVA)?

1vSD = =L
¢ N_1

In one exemplary embodiment, the quality parameters
include a quality current variance standard deviation QIVSD
for each state calculated as:

N
Z (Ivar; — QIVAY?

i=1
JVSD = -
e N

Similar quality parameters based on monitored wire feed
speed (WFS) may also be calculated in a similar manner
such as, for example, a quality wire feed speed average
(QWA), a quality wire feed speed standard deviation
(QWSD), a quality wire feed speed variance average
(QWVA), and a quality wire feed speed variance standard
deviation (QWVSD).

In one exemplary embodiment, the method further
includes: (e) using the quality parameters in a metric to
evaluate subsequent welds. A monitor, integrated with an arc
welder, for performing this exemplary method is also con-
templated.

A method of evaluating a plurality of welds performed
under substantially the same conditions and according to
substantially the same arc welding process by monitoring an
electric arc welder as the welder performs the welds accord-
ing to the arc welding process by creating actual welding
parameters between an advancing wire and a workpiece, the
selected process controlled by command signals to a power
supply of the welder, according to one exemplary embodi-
ment, is disclosed. The method includes, during each weld:
(a) generating a series of rapidly repeating wave shapes,
each wave shape constituting a weld cycle with a cycle time;
(b) dividing the wave shapes into states; (c¢) measuring a
selected weld parameter occurring in one of the states at an
interrogation rate over a period of time to obtain a data set
for the selected weld parameter; (d) for each period of time,
calculating a quality value for the selected weld parameter
from the data set; (e) comparing each quality value to an
expected quality value to determine if a difference between
the quality value and the expected quality value exceeds a
predetermined threshold; (f) if the difference exceeds the
threshold, weighting the quality value with a magnitude
weight based on the difference, and weighting the quality
value with a time contribution weight based on a time
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contribution of the state to its wave shape; and (g) using all
of the quality values, including any weighted quality values,
obtained during the weld time to determine a quality score
for the weld.

In one exemplary embodiment, the method further
includes: (h) rejecting the weld if its quality score is within
a first predefined range of quality scores; and (i) accepting
the weld if its quality score is within a second predefined
range of quality scores.

In one exemplary embodiment, the method further
includes: (h) permanently associating each weld with its
corresponding quality score.

In one exemplary embodiment, the interrogation rate is
120 kHz. In one exemplary embodiment, the period of time
is approximately 250 ms.

In one exemplary embodiment, the selected weld param-
eter is arc current. In one exemplary embodiment, the
selected weld parameter is arc voltage.

A method of providing instruction to an individual (i.e., an
operator) manually performing an arc welding process using
an electric arc welder including an integrated monitor, the
welder performing the arc welding process by creating
actual welding parameters between an advancing wire and a
workpiece, the monitor capable of monitoring the actual
welding parameters, and the arc welding process controlled
by command signals to a power supply of the welder,
according to one exemplary embodiment, is disclosed. The
method includes: (a) generating a series of rapidly repeating
wave shapes, each wave shape constituting a weld cycle
with a cycle time; (b) dividing the wave shapes into states;
(c) measuring a selected weld parameter occurring in one of
the states at an interrogation rate over a period of time to
obtain a data set for the selected weld parameter; (d) for each
period of time, calculating a quality value for the selected
weld parameter from the data set; (e) comparing each quality
value to an expected quality value to determine if a differ-
ence between the quality value and the expected quality
value exceeds a predetermined threshold; (f) if the difference
exceeds the threshold, weighting the quality value with a
magnitude weight based on the difference, and weighting the
quality value with a time contribution weight based on a
time contribution of the state to its wave shape; (g) using the
quality value, including any weights, to update a current
aggregate quality score for the weld; (h) determining if the
current aggregate quality score is within a predefined range
of acceptable quality scores during the welding process; and
(1) if the current aggregate quality score is outside the
predefined range of acceptable quality scores, providing
information on corrective action to the operator.

In one exemplary embodiment, the interrogation rate is
120 kHz. In one exemplary embodiment, the period of time
is approximately 250 ms.

In one exemplary embodiment, the information is pro-
vided visually. In one exemplary embodiment, the informa-
tion is provided audibly.

In one exemplary embodiment, the information includes
a suggested change in a position of the wire relative to the
workpiece. In one exemplary embodiment, the information
includes a suggested change in a rate of movement of the
wire relative to the workpiece.

In one exemplary embodiment, the information is pro-
vided to the operator at a predetermined reporting rate. In
one exemplary embodiment, the reporting rate is less than 30
seconds. In one exemplary embodiment, the reporting rate is
greater than or equal to 30 seconds.

In one exemplary embodiment, the information is pro-
vided if recent changes in the current aggregate quality score

10

15

20

25

30

35

40

45

50

55

60

65

10

indicate the current aggregate quality score is likely to move
outside the predefined range of acceptable quality scores.

In one exemplary embodiment, the method further
includes: (j) if the current aggregate quality score is within
the predefined range of acceptable quality scores, providing
confirmation to the operator that no corrective action is
necessary.

A method of evaluating a plurality of operators perform-
ing an arc welding process by monitoring an electric arc
welder associated with each of the operators, as each welder
is used by its respective operator to perform said arc welding
process by creating actual welding parameters between an
advancing wire and a workpiece with said arc welding
process controlled by command signals to a power supply of
said welder, is disclosed. The method includes, for each
operator: (a) generating a numerical score indicating a
quality measurement of a weld formed according to said arc
welding process relative to a predetermined baseline weld;
(b) measuring an amount of time said operator spends
performing said arc welding process; and (c) associating
said numerical score and said welding time with said opera-
tor.

In one exemplary embodiment, the numerical score is
generated by: (al)) generating a series of rapidly repeating
wave shapes, each wave shape constituting a weld cycle
with a cycle time; (a2) dividing said wave shapes into states;
(a3) measuring a selected weld parameter occurring in one
of said states at an interrogation rate over a period of time
to obtain a data set for said selected weld parameter; (a4) for
each period of time, calculating a quality value for said
selected weld parameter from said data set; (a5) comparing
each quality value to an expected quality value to determine
if a difference between said quality value and said expected
quality value exceeds a predetermined threshold; (a6) if said
difference exceeds said threshold, weighting said quality
value with a magnitude weight based on said difference, and
weighting said quality value with a time contribution weight
based on a time contribution of said state to its wave shape;
and (a7) using all of said quality values, including any
weighted quality values, obtained during said arc welding
process to determine said numerical score.

A method of performing a cost-effective analysis for a
selected arc welding process, wherein an electric arc welder
performs the arc welding process by creating actual welding
parameters between an advancing wire and a workpiece, the
selected process controlled by command signals to a power
supply of the welder, according to one exemplary embodi-
ment, is disclosed. The method includes: (a) identifying a
plurality of weld conditions capable of affecting overall
weld quality; (b) varying one of the weld conditions across
a plurality of welds and fixing all remaining weld conditions
across the welds; (c¢) for each of the welds: (i) generating a
series of rapidly repeating wave shapes, each wave shape
constituting a weld cycle with a cycle time; (ii) dividing the
wave shapes into states; (iii) measuring a selected weld
parameter occurring in one of the states at an interrogation
rate over a period of time to obtain a data set for the selected
weld parameter; (iv) for each period of time, calculating a
stability value for the selected weld parameter from the data
set; (v) comparing each stability value to an expected
stability value to determine if a difference between the
stability value and the expected stability value exceeds a
predetermined threshold; (vi) if the difference exceeds the
threshold, weighting the stability value with a magnitude
weight based on the difference, and weighting the stability
value with a time contribution weight based on a time
contribution of the wave shape state to its wave shape; (vii)
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using the stability values obtained during the weld time,
including any weighted stability values, to calculate an
overall quality score for the weld; (viii) determining a cost
for the weld; and (ix) associating the quality score and the
cost with the weld.

In one exemplary embodiment, the weld conditions
include one or more of wire characteristics, workpiece
characteristics, a shielding gas flow rate, a shielding gas
composition, and a workpiece pre-heat temperature.

In one exemplary embodiment, the cost includes mon-
etary expenditures related to producing the weld. In one
exemplary embodiment, the cost includes a total time
required to complete the weld.

In one exemplary embodiment, the stability value is a
standard statistical deviation for the selected weld param-
eter.

In one exemplary embodiment, the interrogation rate is
120 kHz. In one exemplary embodiment, the period of time
is approximately 250 ms.

In one exemplary embodiment, the method further
includes: (d) outputting the quality score and the cost (or
respective averages thereof) associated with each of the
welds.

A method of using pre-set welding parameters to obtain a
weld having a desired quality, the weld produced by an
electric arc welder performing a selected arc welding pro-
cess by creating actual welding parameters between an
advancing wire and a workpiece, the welding process con-
trolled by command signals to a power supply of the welder,
according to one exemplary embodiment, is disclosed. The
method includes: (a) presenting a plurality of sets of selected
weld parameters to a user along with a quality score corre-
sponding to each set, wherein the quality score quantifies an
overall quality of a weld previously obtained using the set of
selected weld parameters; (b) receiving input from the user
as to which of the sets of selected weld parameters to use for
performing the welding process; and (c) performing the
welding process using the set of selected weld parameters
corresponding to the input.

In one exemplary embodiment, a cost associated with
performing the welding process using each of the sets of
selected weld parameters is presented to the user.

In one exemplary embodiment, the method further
includes: (d) receiving input from the user identifying a
minimum acceptable quality score; and (e) filtering out all
sets of selected weld parameters that correspond to an
associated quality score below the minimum acceptable
quality score.

In one exemplary embodiment, the method further
includes: (d) receiving input from the user identifying a
range of acceptable quality scores; and (e) filtering out all
sets of selected weld parameters that correspond to an
associated quality score outside of the range of acceptable
weld quality scores.

In one exemplary embodiment, a method of diagnosing an
arc welding process by monitoring an electric are welder as
the welder performs the arc welding process by creating
actual welding parameters between an advancing wire and a
workpiece to create a weld is disclosed. The welding process
is controlled by command signals to a power supply of the
welder. The method includes generating a series of rapidly
repeating wave shapes, each wave shape constituting a weld
cycle with a cycle time, and dividing the wave shapes into
states. The method further includes measuring a plurality of
weld parameters occurring in one or more of the states at an
interrogation rate over a period of time repeatedly during the
welding process. The method also includes calculating a
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plurality of quality parameters for each of the one or more
states based on the measurements of the weld parameters
during the welding process. The method further includes
analyzing at least one of the plurality of quality parameters
and the plurality of weld parameters to diagnose the arc
welding process by determining one or more possible causes
of one or more localized or continuous defects of the weld.

The method may further include comparing a value of
each of the quality parameters calculated for each period of
time to a corresponding expected quality parameter value to
determine if a difference between the calculated quality
parameter value and the expected quality parameter value
exceeds a predetermined threshold. If the difference exceeds
the threshold, the method also includes weighting the cal-
culated quality parameter value with a magnitude weight
based on the difference, and weighting the calculated quality
parameter with a time contribution weight based on a time
contribution of its state to the wave shape including the state.

In one exemplary embodiment, a system for diagnosing
an arc welding process by monitoring an electric are welder
as the welder performs the arc welding process by creating
actual welding parameters between an advancing wire and a
workpiece to create a weld is disclosed. The welding process
is defined by a series of rapidly repeating wave shapes
controlled by command signals to a power supply of the
welder. The system includes a logic state controller for
segmenting the wave shapes into a series of time segmented
states and a circuit for selecting a specific wave shape state.
The system further includes monitoring devices for moni-
toring a plurality of weld parameters occurring in one or
more of the states at an interrogation rate over a period of
time repeated during the welding process to obtain a data set
for the plurality of weld parameters. The system also
includes a circuit for calculating a plurality of quality
parameters for each of the states based on the monitored
plurality of weld parameters. The system further includes a
diagnostic logic circuit for analyzing at least one of the
plurality of quality parameters and the plurality of weld
parameters to diagnose the arc welding process by deter-
mining one or more possible causes of one more localized or
continuous defects of the weld.

The system may further include a circuit for comparing a
value of each of the quality parameters calculated for each
period of time to a corresponding expected quality param-
eter value to determine if a difference between the calculated
quality parameter value and the expected quality parameter
value exceeds a predetermined threshold. The system may
also include a circuit for weighting the calculated quality
parameter value with a magnitude weight based on the
difference, and weighting the calculated quality parameter
value with a time contribution weight based on a time
contribution of its state to the wave shape including the state,
if the difference exceeds the threshold.

In one exemplary embodiment, a method of determining
a quality of a weld by monitoring a welder as the welder
performs a welding process by creating actual welding
parameters between an advancing wire and a workpiece is
provided. The welding process is defined by a series of
rapidly repeating wave shapes controlled by command sig-
nals to a power supply of the welder. The method includes
segmenting a wave shape, having a weld cycle with a cycle
time, into a series of time-segmented states. The method also
includes selecting a non-adaptive state from the series of
time-segmented states. The non-adaptive state represents a
segment of the wave shape where the command signals
remain invariable under different weld conditions. The
method further include measuring a plurality of weld param-
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eters generated between the advancing wire and the work-
piece during the non-adaptive state at an interrogation rate
over an interval of time. In addition, the method includes
calculating a plurality of quality parameters for the non-
adaptive state based on measurements of the plurality of
weld parameters acquired during the interval of time within
the non-adaptive state.

In one exemplary embodiment, a system for determining
a quality of a weld by monitoring a welder as the welder
performs a welding process by creating actual welding
parameters between an advancing wire and a workpiece. The
welding process being defined by a series of rapidly repeat-
ing wave shapes controlled by command signals to a power
supply of the welder. The system includes a logic state
controller for segmenting a wave shape, having a weld cycle
with a cycle time, into a series of time-segmented states. The
system further includes a selection circuit for selecting a
non-adaptive state from the series of time-segmented states.
The non-adaptive state represents a segment of the wave
shape where the command signals remain invariable under
different weld conditions. The system also includes a moni-
tor circuit configured to measure a plurality of weld param-
eters generated between the advancing wire and the work-
piece during the non-adaptive state at an interrogation rate
over an interval of time. In addition, the system includes a
circuit for calculating a plurality of quality parameters for
the non-adaptive state based on measurements of the plu-
rality of weld parameters acquired during the interval of
time within the non-adaptive state.

Numerous aspects of the general inventive concepts will
become readily apparent from the following detailed
description of exemplary embodiments, from the claims and
from the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The general inventive concepts as well as embodiments
and advantages thereof are described below in greater detail,
by way of example, with reference to the drawings in which:

FIG. 1 is a combined block diagram and computer flow
chart or program illustrating a monitor of an arc welder,
according to one exemplary embodiment;

FIG. 2 is a current command graph from a wave generator
showing the command wave shape divided into time seg-
ments or states of both fixed and variable durations, accord-
ing to one exemplary embodiment;

FIG. 3 is a current graph of the actual command signals
for arc current with the actual arc current parameter super-
imposed in dashed lines, according to one exemplary
embodiment;

FIG. 4 is a block diagram of an aspect of the invention for
monitoring signals internal of the welder instead of weld
parameters as illustrated in FIGS. 2 and 3, according to one
exemplary embodiment;

FIG. 5 is a time based graph illustrating the wave shape,
wire feeder command signal and actual wire feeder com-
mand signal as experienced in the exemplary embodiment
shown in FIG. 4;

FIG. 6 is a portion of a parameter curve illustrating a level
monitoring feature, according to one exemplary embodi-
ment;

FIG. 7 is a block diagram and computer flow chart or
program illustrating processing for stability during a
selected state of the wave shape shown in FIGS. 2 and 3,
according to one exemplary embodiment;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 8 is a block diagram and computer flow chart or
program to process information from the level monitor
stages of the exemplary embodiment shown in FIG. 1;

FIG. 9 is a flowchart illustrating a weighting method for
weighting sampled weld data parameters, according to one
exemplary embodiment;

FIG. 10 is a diagram of a conceptual production line,
according to one exemplary embodiment;

FIG. 11 is a flow chart illustrating a method of instruction,
according to one exemplary embodiment;

FIG. 12 is a block diagram illustrating a system for
monitoring students, according to one exemplary embodi-
ment.

FIG. 13 is a flow chart illustrating a method of monitoring
students, according to one exemplary embodiment.

FIGS. 14A and 148 are tables showing exemplary data
used in a cost analysis for a welding process, according to
one exemplary embodiment;

FIG. 15 is a table showing pre-set data associating weld-
ing conditions, welders, and welding processes, according to
one exemplary embodiment;

FIG. 16 illustrates a schematic block diagram of an
embodiment of a system for diagnosing an arc welding
process;

FIG. 17 is a flowchart of a method of diagnosing an arc
welding process using the system of FIG. 16 by monitoring
an electric arc welder as the welder performs the arc welding
process by creating actual welding parameters between an
advancing wire and a workpiece to create a weld;

FIG. 18 illustrates a schematic block diagram of an
embodiment of a system for adjusting welding process
monitoring and evaluation in response to different or varying
welding conditions;

FIG. 19 illustrates a schematic block diagram of an
exemplary, non-limiting embodiment of a monitor from the
system of FIG. 18 according to one or more aspects; and

FIG. 20 illustrates a flowchart of a method for determin-
ing a quality of a weld by monitoring a welder as the welder
performs a welding process by creating actual welding
parameters between an advancing wire and a workpiece.

DETAILED DESCRIPTION

While the general inventive concepts are susceptible of
embodiment in many different forms, there are shown in the
drawings and will be described herein in detail specific
embodiments thereof with the understanding that the present
disclosure is to be considered as merely an exemplification
of the principles of the general inventive concepts. Accord-
ingly, the general inventive concepts are not intended to be
limited to the specific embodiments illustrated herein. Fur-
thermore, the disclosures of U.S. Pat. Nos. 5,278,390 and
6,441,342 are incorporated herein by reference, in their
entirety, as they may provide background that facilitates a
better understanding of particular aspects and/or advance-
ments of the general inventive concepts.

The following are definitions of exemplary terms used
throughout the disclosure. Both singular and plural forms of
all terms fall within each meaning:

“Logic,” synonymous with “circuit” as used herein
includes, but is not limited to, hardware, firmware, software
and/or combinations of each to perform a function(s) or an
action(s). For example, based on a desired application or
needs, logic may include a software controlled micropro-
cessor, discrete logic such as an application specific inte-
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grated circuit (ASIC), or other programmed logic device. In
some instances, logic could also be fully embodied as
software.

“Software” or “computer program” as used herein
includes, but is not limited to, one or more computer
readable and/or executable instructions that cause a com-
puter or other electronic device to perform functions,
actions, and/or behave in a desired manner. The instructions
may be embodied in various forms such as routines, algo-
rithms, modules or programs including separate applications
or code from dynamically linked libraries. Software may
also be implemented in various forms such as a stand-alone
program, a function call, a servlet, an applet, instructions
stored in a memory, part of an operating system or other type
of executable instructions. It will be appreciated by one of
ordinary skill in the art that the form of software is depen-
dent on, for example, requirements of a desired application,
the environment it runs on, and/or the desires of a designer/
programmer or the like.

“Computer” or “processing unit” as used herein includes,
but is not limited to, any programmed or programmable
electronic device that can store, retrieve, and process data.

Referring now to the drawings which illustrate various
exemplary embodiments of the general inventive concepts
and applications employing the general inventive concepts,
FIG. 1 shows a block diagram and flow chart or program
implemented by a standard onboard computer in electric arc
welder 10. For example, welder 10 can be a Power Wave,
inverter based electric arc welder sold by The Lincoln
Electric Company of Cleveland, Ohio. In accordance with
standard technology, welder 10 includes a three phase elec-
trical input L1, L2, L3 directing electrical current to power
supply 12. An onboard computerized controller operates the
inverter based power supply to create a positive potential at
terminal 14 and a negative potential at terminal 16.

Selected arc welding processes are performed by directing
a selected previously determined wave shape to the actual
welding circuit, shown to have a standard smoothing induc-
tor 18. Welder 10 performs the electric arc welding process
between an advancing welding wire 20 from reel 22 driven
at a desired rate by feeder 24 operated at the speed of motor
26. Heat of the arc melts wire 20 and workpiece 30 to
deposit molten metal from the wire onto the workpiece. To
monitor the actual parameters of the welding process, shunt
32 (a monitoring device) provides output signal I, from
block 34 on line 34a. This signal is representative of the
actual arc current at any given time. In a like manner, the
voltage between wire 20 and workpiece 30 is sensed by
block 36 (a monitoring device) so the output V, on line 36a
is the instantaneous arc voltage to constitute a second weld
parameter. The weld parameters illustrated in FIG. 1 are the
actual arc current I, and the actual arc voltage V.

Another parameter controlled for practicing the invention
is wire feed speed (WFS), caused by rotation of the motor
26. Consequently, three externally readable welding param-
eters of the welding process are arc current I, in line 34a, arc
voltage V,, in line 36a and the wire feed speed WFS readable
in line 465, as explained later. The WFS in line 465 is read
by tachometer or encoder 46¢ (a monitoring device) con-
nected to the drive rolls 24 of the feeder gear box or,
alternatively, on a passive wheel attached to the wire. In
FIG. 1, the tachometer is shown as driven by the feed rolls.
It could also be driven, for example, by the output shaft of
motor 26.

The Power Wave electric arc welder includes a wave
shape generator to create a series of rapidly repeating wave
shapes, each wave shape (e.g., a single sequence of a
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voltage/current waveform) constituting a weld cycle with a
cycle time. These weld cycles are repeated during the
welding process to define a weld time. One embodiment of
the Power Wave welder 10 is shown in U.S. Pat. No.
5,278,390 to Blankenship wherein the welder controls the
individual wave shape to be output by power supply 12
through command line 42 and the speed of motor 26 through
command line 44. Command line 44 has a signal which is
recognized by the microprocessor on the wire drive control
46 of motor 26 to output the motor voltage drive PWM
pulses in line 464. In practice, the information on line 44 is
digital and the command signal on line 46a is analog. Wave
shape generator 40 creates digital signals in lines 42, 44 to
controlling the desired welding process to be performed by
welder 10. The external parameters I, V, and WFS can be
read by appropriate monitoring devices.

The wave shape generator 40 divides or segments each of
the output wave shapes into a series of time segmented
portions or states. In one exemplary embodiment, monitor M
is a program loaded into the computer of welder 10, among
other things, to read parameters during one selected segment
of'the wave shape. The monitor M can be implemented using
software, hardware, and combinations thereof, without
departing from the spirit and the scope of the general
inventive concepts. The portion of the wave shape being
monitored is determined by the wave shape generator 40.
Indeed, monitor M monitors various time segments or states
of the wave shape output by generator 40. In practice, the
wave shape generator 40 selects several of the time seg-
ments forming the wave shape and outputs the various states
into a command interface 70. Consequently, the command
interface 70 causes measurement of the parameters during
selected time segments of each wave shape output by the
generator. Information or data on the command interface 70
includes the state or states being monitored and the particu-
lar value or level of the various parameters 1,, V,, and/or
WEFS.

Interface 70 of monitor M contains the data recognizing
the particular state being processed together with the values
for the weld parameters being read. The data in interface 70
is analyzed by level stage 81 to determine the relationship of
a parameter on a level basis. The actual parameters are
compared with trained or measured parameters during
selected states of the wave shape from generator 40. During
a particular segment or state of the wave shape, level
monitor stage 81 reads the actual parameters in lines 34a,
36a and 46b. These instantaneous values of the actual
parameters are stored in internal memory, identified as the
report logic 82. The reading of the actual parameters occurs
rapidly as indicated by oscillator 84. In one exemplary
embodiment, reading of the actual parameters occurs at a
rate of 120 kHz for pulse welding. The rate can be adjusted;
however, the higher the rate the better the sensitivity of the
level measurement. Level monitor 81 also determines a
deviation of the actual welding parameters from either a
minimum or maximum level. In this manner, not only can
the actual values be stored, but data is stored representing
deviation of the actual reading of the parameter for a given
state as compared to a minimum level or to a maximum
level. Report memory or logic 82 records deviation from a
set level during a given state of the wave shape, as well as
the actual level during the selected state of the wave shape.
For a total weld cycle, these readings are accumulated,
counted or otherwise processed to determine the quality of
the weld and any trends toward weld defects.

In one exemplary embodiment, the readings (e.g., peri-
odically accumulated sets of the readings) are weighted
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based on a plurality of criteria. The readings can be accu-
mulated, for example, every 250 ms. In one exemplary
embodiment, a set is weighted based on a magnitude of its
deviation from an expected value (e.g., predetermined
threshold, mean value) and a time contribution of its time
segment to the corresponding wave shape. Such a weighting
method (e.g., the weighting method 900 shown in FIG. 9 and
described below) could be implemented, for example, in
level monitor stage 81 or any similar or related data pro-
cessing stage.

Stability monitor stage 91 reads the actual welding param-
eters on lines 34a, 36a and 465 at a rapid rate determined by
oscillator 94. In one exemplary embodiment, reading of the
actual parameters occurs at a rate of 120 kHz for pulse
welding. Stability monitor stage 91 analyzes the actual weld
parameters for standard deviation or absolute deviation
during a state of the wave shapes being output. Report
memory or logic 92 records this deviation during a given
state of the wave shape, as well as the actual value during the
selected state of the wave shape. For a total weld cycle, these
readings are accumulated, counted or otherwise processed to
determine the quality of the welding and any trends toward
weld defects.

In one exemplary embodiment, the readings (e.g., peri-
odically accumulated sets of the readings) are weighted
based on a plurality of criteria. The readings can be accu-
mulated, for example, every 250 ms. In one exemplary
embodiment, a set is weighted based on a magnitude of its
deviation from an expected value (e.g., predetermined
threshold, mean value) and a time contribution of its time
segment to the corresponding wave shape. Such a weighting
method (e.g., the weighting method 900 shown in FIG. 9 and
described below) could be implemented, for example, in
stability monitor stage 91 or any similar or related data
processing stage.

A few wave shapes can be skipped when using either
monitor stage 81 or monitor stage 91. In one exemplary
embodiment, after a start sequence, all of the wave shapes
are monitored for analyzing the actual welding parameters
during the various selected states of the wave shape. Several
states of a given wave shape in a welding process are
monitored and the results are recorded separately for each
state to be analyzed for level conformity, trend and stability.
When measuring stability, a standard deviation algorithm is
used in monitor M to evaluate 1,, V, and/or WFS. This
information is available to analyze each of the various
segments of the wave shape forming a total weld cycle with
a given cycle time. In practice, certain states, such as the
peak current during a pulse wave shape are monitored to
determine the stability and level deviations of the pulse
welding process. In an STT welding process, monitor M
records short circuit times for each wave shape, since these
segments vary in time according to the external conditions
of the welding process. Variation in short circuit time
informs the welding engineer of adjustments to be imple-
mented.

The series of rapidly repeating wave shapes generated by
the standard wave shape generator 40 are divided into time
states, as shown in FIGS. 2 and 3. The output current
command wave shape is pulse wave shape 100 with a peak
current 102 having a fixed duration of time segment A shown
in FIG. 3 and a background current 104 with a variable time
duration for segment B shown in FIG. 3. The wave shape is
divided into segments at times t,-t, so that the command
interface 70 receives the particular state being processed by
generator 40 at any given time. As shown in FIG. 3 by the
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dashed line 110, the actual arc current from shunt 33 in FIG.
1 deviates from the command current signal of wave shape
100.

During the selected functional states, such as state A or
state B, the actual arc current 1, is read at a rate determined
by oscillator 84 or oscillator 94. In practice, this is a single
software oscillator. Level monitor stage 81 records deviation
in the ordinate direction between the actual parameter 110
and the command level of wave shape 100. During the
selected state, stability monitor stage 91 reads the statistical
standard deviation of the actual parameter. States A and B
are normally monitored for a pulse welding process. How-
ever, the ramp up state between t,-t, and/or the ramp down
state during t,-t, can be monitored to control or at least read
the activity of the actual parameter during these states of the
wave shape. As illustrated, the background time segment B
has a variable time, as shown by the variable time positions
of time t,. Consequently, the state being monitored can have
a fixed time duration or a variable duration. When a variable
duration, the state is monitored until the end of the duration.
Report logic 82 senses this as a level from one time, i.e. t,,
to the successive time, i.e., t;. As the time t; changes with
respect to the time t,, this time of each wave shape is
recorded as a level which is compared to a known time,
obtained from interface 70 by selection of the welding mode
of generator 40.

Monitor M monitors the actual welding parameters during
specific selected states of the wave shapes; however, the
monitor also has programming to operate the computer to
determine the stability and/or level characteristics of an
internal signal, such as the actual input to motor 26 on line
46a. Such internal monitoring of the signal on line 464 is set
forth in the flow chart shown in FIG. 4 utilizing the signals
shown in FIG. 5.

The microprocessor in the wire feeder includes a subrou-
tine that is a PID comparing network similar to an error
amplifier. This PID comparator is schematically illustrated
as block 152 in FIG. 4 having a first input 465 which is a
wire feed speed WFS and a command signal on line 44. The
actual WFS on line 465 is read by a tachometer or encoder
connected to the drive rolls 24 of the feeder gear box or,
alternatively, on a passive wheel attached to the wire to read
the WFS. The output 156 of the PID is the voltage level at
the input of the pulse width modulator 158 which is digitized
in the microprocessor of the feeder. The output of the pulse
width modulator is the command signal on line 46a to motor
26 for controlling the wire feed speed of feeder 24.

In accordance with one exemplary embodiment, monitor
M includes the process program as schematically illustrated
in FIG. 4 wherein the signal on line 156 is read by process-
ing block 160 and the results are output on line 162 to the
input of the level monitor stage 81 and/or the stability
monitor stage 91, as previously discussed with respect to the
embodiment shown in FIG. 1. Consequently, an internal
signal on line 156 is read at a rapid rate, exceeding 1 kHz,
to check the level of this internal signal and/or the stability
of this signal.

As illustrated in FIG. 5, the wave shape 100 for pulse
welding extends as a succession of wave shapes from
generator 40. With respect to the wire feed speed, the
command signal from generator 40 on line 44 takes the form
shown in FIG. 5. It includes a start ramp up portion 170 and
an ending ramp down portion 172. These two portions cause
a drastic increase or decrease in the command signal on line
44. Between these abnormal command portions of the signal
on line 44, there is a generally level wire feed speed
command which is employed for the purposes of testing
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stability and/or the level deviation of this internal signal on
line 156. In FIG. 5, the wire acceleration portion 170 is held
until the speed is stabilized. This time is also monitored.
Other internal signals can be monitored using the same
concept as shown in FIGS. 4 and 5. The level monitor stage
determines if the signal on line 156 exceeds the minimum or
maximum for a prolonged time. For the wire feeder, this
normally indicates a jam in the feeder system.

FIG. 6 shows the concept of a level monitor stage wherein
threshold 180 is the maximum parameter level and threshold
182 is the minimum parameter level. When the parameter,
illustrated as arc current, exceeds threshold 180 as indicated
by transient 184, there is a recorded event of over current. In
a like manner, when the current is less than the minimum
level 182, as shown by transient 186, there is recorded an
under current event. Additionally, these events can be
weighted based on a plurality of criteria. In one exemplary
embodiment, each event is weighted based on a magnitude
of'its deviation from an expected value (e.g., predetermined
threshold, mean value) and a time contribution of its time
segment to the corresponding wave shape. Such a weighting
method (e.g., the weighting method 900 shown in FIG. 9 and
described below) could be implemented, for example, in
level monitor stage 81, stability monitor stage 91, or any
similar or related data processing stage.

The weighted events are counted or otherwise accumu-
lated periodically to provide the output of the level monitor
stage 81 as shown in FIG. 1. The weighted events can be
accumulated, for example, every 250 ms. Consequently, the
level monitor stage 81 detects excursions 184 above a preset
threshold and excursions 186 below a preset level. These
levels are set by the particular state in the interface 70. Some
states of a wave shape employ the level monitor stage 81
with thresholds and other states of the same wave shape may
use the stability monitor stage 91. Preferably, and in prac-
tice, both monitor stages are used for the selected state or
states of the wave shape being interrogated by monitor M.

The embodiment shown in FIG. 1 monitors the level
and/or stability of actual parameters for internal control
signals during a selected state of the wave shape from
generator 40 or during the total weld as explained in
relationship to the disclosure in FIGS. 4 and 5. The monitor
M in FIG. 1, as so far explained, provides weighted data for
use in analyzing the weld cycle or the total operation of the
welder over a work period of time. Various analysis pro-
grams are used to process data after the data has been
determined and stored. In accordance with one exemplary
embodiment, the weighted stability data from monitor stage
91 is analyzed by two programs as shown in FIG. 7. It is
within the skill of the art to analyze the stability data in a
variety of computer programs for recording, display and
process intervention or evaluation.

As shown in FIG. 7, analysis program 200 uses the results
of monitor stage 91 of monitor M (i.e., the weighted stability
values). As an example, the program 200 is operated during
monitoring of the time state between times t,-t;, which is the
current peak portion of the wave shape as shown in FIGS.
2 and 3. Analysis program 200 is shown as a computer flow
chart showing two systems employed to analyze the results
of the stability stage 91 during the peak current state where
the statistical standard deviation of actual current in line 34a
is calculated. In practice, there is a slight delay before the
monitor stage 91 makes calculated deviations. The sample
select feature to read I, during state t,-t; but ignore I,
otherwise is illustrated as sample selector or filter 90a. This
program delay at the start of time segment t,-t; incorporated
in filter 90a allows the monitor to ignore fluctuations in the
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current which are experienced during each level shift in the
various stages of the output wave shape.

In the programmed flow chart shown in FIG. 7, the
stability output from monitor stage 91 is read by the com-
puter program shown as block 210 which is reset as indi-
cated by the logic on line 210aq at the end of each wave shape
determined by the existence of time t;. Consequently, the
stability of each wave shape is captured by block 210. This
captured stability data is processed in accordance with two
separate analysis programs.

The first program includes the pass analysis routine 212.
If the stability for a given wave shape passes the desired
threshold set in block 212, this information is output on line
214. If the particular wave shape has a stability less than a
desired threshold, a logic signal appears in line 216. Coun-
ters 220, 222 are enabled by the logic on line 224 during
each of the weld cycles. Consequently, the stability pass
signals for each of the wave shapes during the weld cycle are
counted in either counter 220 or counter 222. Of course, the
first portion of each state t,-t; is ignored to allow the
parameter 1, to settle. The results of the two counters are
read, stored or otherwise retained as indicated by the read
block 220a, 222a, respectively. In one exemplary embodi-
ment, if the instability accumulated by counter stage 222 is
beyond a desired number, the weld cycle is rejected as
indicated by block 226.

A second analysis implementation of computer program
200 shown in FIG. 7 is illustrated as block 230. This is a
program enabled during the weld cycle. The total instability
of the weld cycle accumulating during all wave shapes is
analyzed as a total number wherein 100 is the most stable
arc. The output of this stability accumulator and analyzing
stage is read, stored or otherwise retained as indicated by
block 236. If the reading stage 234 is below a set stability
then the weld cycle is rejected as indicated by block 238. A
person skilled in the art can design other programs for
analyzing the results of the monitor M from stability stage
91. The computer program 200 exhibits two implementa-
tions to analyze the obtained weighted stability data. The
two implementations can be selectively enabled (either one
or the other or both) depending on the nature of the arc
stability or weld quality problem the monitor is configured
to detect. It is advantageous to read stability in only selected
states of the wave shapes, because stability over a variable
pulse is not obtainable.

In accordance with another exemplary embodiment, the
computer program for analyzing the results of level monitor
stage 81 of monitor M (i.e., the weighted read values) is
shown in FIG. 8. In this illustrated embodiment, level
analysis program 250 processes the output from monitor
level stage 81 in two separate routines, identified as a
minimum monitor stage 81a with filter 80c and a maximum
monitor stage 815 with filter 80d. Either one of these stages
can be used separately or, in practice, they are combined.
Subsection 81a relates to the determination of transitions
186 shown in FIG. 6 which is an event where the actual
parameter is below the threshold minimum 182. The mini-
mum level on line 202a¢ from generator 40 is used when
stage 81a is selected by program step 252. These events are
counted by block 254 for each of the weld cycles as
indicated. The counter is enabled during the weld cycle by
the logic on line 2544. Counter 254 is a running total of the
wave shapes used in a weld cycle. The number of wave
shapes is obtained by counting the occurrences of time t;
from the output of generator 40 as indicated by line 258. As
indicated before, the first part of the state is generally
ignored to remove normal inconsistencies at the start of any
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particular state. Block 260 is the computer flow chart
subroutine for dividing the accumulated minimum events
186 from monitor stage 81a divided by the number N from
the counter 256. This provides an average of minimum
transitions during the weld cycle, which is provided to
subroutine 262. The average minimum transitions are read,
stored or otherwise output as indicated by block 262a. If the
average is above a certain threshold number provided by the
wave generator or by the program step 264, program routine
266 determines that the weld cycle is unacceptable. If
acceptable, no action is taken. However, if the acceptable
routine 266 determines that the average is merely approach-
ing the number 264, a warning signal is provided by block
266a. Total unacceptability provides a weld reject signal by
routine 266b. A person skilled in the art can devise other
computer programs for effecting the analysis of the mini-
mum current deviation or transition of the actual parameter
as it relates to a set threshold.

In FIG. 8, the maximum monitor stage 815 operates in
conjunction with the minimum stage 81a. The maximum
level is on line 2025 from generator 40 and is used when
stage 815 is selected by program 270. Like data information
and programming retains the same numbers. Counter 272
counts the number of events 184 during the state t,-t.
Subroutine 280 provides the average of events 184 during
the various wave shapes formed during the weld cycle. This
average in block 282 is read, stored or otherwise used as
indicated by block 282a. In block 286, the acceptability
subroutine is processed wherein the number indicated by
block 284 output from generator 40 or otherwise imple-
mented by computer program is compared with the average
from block 282 to provide a warning signal as indicated by
block 286a when the average approaches the set number
indicated by block 284. If the number is reached, a reject
subroutine is implemented as indicated by block 2864.

In practice, stage 81a and stage 815 are implemented
together and the average of both transitions from blocks 262
and 282 are analyzed by a read, acceptable number to give
a warning and/or a rejection of a given weld cycle. Conse-
quently, in practice, minimum level deviations are analyzed,
maximum level deviations are analyzed, and total level
deviations are analyzed. All of this is accomplished by the
computer program as schematically illustrated in FIG. 8.
The level stages 81a, 815 output level conditions which are
stored and/or displayed as discussed with report logic 82.
The level conditions output by the level stages 81a, 815 can
be weighted, as discussed herein.

In view of the above, the use of the magnitude and time
contribution weights provide a more accurate measure of
parameter stability and, thus, overall weld quality. In this
manner, an easy to understand numerical value or score can
be computed to quantify the overall quality of a weld. In one
exemplary embodiment, a weld score between 0-100 or
0%-100% is calculated for a weld based on monitored
welding conditions or parameters, such as those monitored
by the exemplary embodiment shown in FIG. 1. Such a
weighting method (e.g., the weighting method 900 shown in
FIG. 9 and described below) could be implemented, for
example, in level monitor stage 81, stability monitor stage
91, or any similar or related data processing stage.

A weighting method 900, according to one exemplary
embodiment, is shown in FIG. 9. The weighting method can
be implemented, for example, in the monitor M. In an initial
step 902 of the weighting method 900, waves shapes of a
weld cycle are divided into a series of time segmented
portions or states. Then, in step 904, weld parameters (e.g.,
voltage, amperage) corresponding to at least one of the states
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are sampled at a given rate. In one exemplary embodiment,
the sampling rate is 120 kHz. In one exemplary embodi-
ment, the sampling rate is greater than or equal to 120 kHz.
In one exemplary embodiment, the sampling rate can be
used to generate an interrupt for interrupt service routine
(ISR) processing.

The sampled weld parameters are used to calculate weld
data. In the exemplary weighting method 900, the weld data
include an execution count, a voltage sum, a voltage squared
sum, an amperage sum, and an amperage squared sum. The
execution count starts at zero and gets incremented by one
for each sampling period (e.g., every 120 kHz). The voltage
sum and the amperage sum start at zero and get increased by
the sampled voltage and the sampled amperage, respec-
tively, at each sampling period. Similarly, the voltage
squared sum and the amperage squared sum start at zero and
get increased by the square of the sampled voltage and the
square of the sampled amperage, respectively, at each sam-
pling period.

After a predefined sampling period, in step 906, the
sampled weld data is passed on for further processing (as
described below), the weld data values are reset to zero, and
the sampling process (i.e., step 904) is repeated. In one
exemplary embodiment, the sampling period is 250 ms.
Each collection of sampled weld data forms an analysis
packet. After further processing of the analysis packet (e.g.,
every 250 ms), additional weld data is available representing
a current weld quality rating for the corresponding state.
This additional weld data could be graphed and/or averaged.
The average of these ratings over the length of the weld (i.e.,
the weld cycle) provides an overall quality indicator for the
weld.

The further processing of the weld data of each analysis
packet that occurs in step 906, for each of the sampled states,
results in the calculation of additional weld data. The
additional weld data include an execution count, a voltage
average, a voltage root mean square (RMS), a voltage
variance, an amperage average, an amperage RMS, and an
amperage variance. The value of the execution count of the
additional weld data is copied from the value of the execu-
tion count of the weld data. The voltage average is calculated
as the voltage sum (from the weld data) divided by the
execution count. The voltage RMS is calculated as the
square root of the quotient obtained by dividing the voltage
squared sum (from the weld data) by the execution count.
The voltage variance is calculated as the voltage RMS minus
the voltage average. The amperage average is calculated as
the amperage sum (from the weld data) divided by the
execution count. The amperage RMS is calculated as the
square root of the quotient obtained by dividing the amper-
age squared sum (from the weld data) by the execution
count. The amperage variance is calculated as the amperage
RMS minus the amperage average.

After step 906, subsequent processing depends on
whether the current weld is a training weld to be used in
determining weld quality parameters or a normal weld to be
evaluated against such weld quality parameters. Thus, in
step 908, it is determined whether the current weld is a
training weld or a normal weld. In one exemplary embodi-
ment, the default condition is that a weld is a normal weld
unless otherwise indicated (e.g., by user input).

If the current weld is de